Skip to content

Comet Hale-Bopp was the last "great" comet prior to Comet NEOWISE that we saw back in July.  That was over 23 years ago! Of course, photography was still in the film age back then.  This picture was taken with my then-shiny Pentax ME Super 35mm SLR film camera and 200mm telephoto lens.

When I was looking through a box of old photos I came across an envelope with these in it.  I wondered if scanning the negatives would yield a superior image compared to the original prints?  On the night of April 4 1997, I had taken three photos at 60 second exposures.  I scanned in those negatives and using today's techniques of stacking and stretching, the result was the image above.  I'm happy to say that the newly processed image has much more detail in it than the original print.  I think that the result is reasonably comparable to astronomy photos taken today.  I'm glad I stuffed those photos in that box so many years ago!

In the mountains of New Mexico the temperatures vary quite a bit during the year.  Summer overnight lows are typically in the mid-60s, while winter lows are usually in the mid-teens.  Telescopes expand and shrink with these temperature changes.  It turns out that the telescope mount also changes a little.  The result is that the mount’s drive gear mesh needs to be adjusted to optimize performance for summer or winter operation.

In the case of my Titan mount, there’s a sweet spot in the gear mesh tension for best performance.  If the mesh is too loose then excessive backlash degrades guiding performance.  If the mesh is too tight then the motors have to work harder and may even stall or overheat.  Adjusting for the right mesh tension has been a try it and see how it does game.

Enter my latest project: the Telescope Mount Power Monitor.  This device displays the voltage and amount of current the mount is using.  Knowing how much current the mount’s motors are using can indicate how hard they are working.  So when adjusting the mount’s gear mesh watching for the point that the current starts to increase indicates “that’s tight enough”!

The monitor consists of three modules: a Feather M0 Express microcontroller, an OLED FeatherWing display and the INA260 Power Sensor.  All the modules come from Adafruit.  The software is written in “C” using the Arduino environment and is based on the example code that Adafruit provides.  The total cost of the project was about $60.00, plus my labor of course.

The Monitor is placed in series with the mount’s power source and gets its own power from any USB power supply.  The display provides real-time readouts of the current the mount is drawing and the supply voltage level.  Hopefully, this tool will ease the gear mesh adjustment process this coming winter.

When doing deep sky imaging of objects like nebula and galaxies the Moon's presence is generally considered to make it a "no-go".   Moonlight washes out all the object's faint details.  And, the brighter the Moon the worse its effect.  But avoiding moonlight severely restricts imaging time.

A relatively new type of filter, called a dual-band filter, can be used to regain some imaging time... even in moonlight!  Most narrowband filter pass light in a single region of the light spectrum.  The dual-band filter has two passbands, one centered on Hydrogen-Alpha (Ha) emissions and another centered on Oxygen III (OIII).  While allowing those bands to get into the camera, the filter blocks all the other interfering moonlight.  The dual-band approach is thought to work better for color cameras that the single band filters.

This time of year in New Mexico is monsoon season and cloudy nights are common.  So when last night promised to be clear I thought I'd give a dual-band filter a try, since a very bright 99% illuminated Moon was in the sky.  This image of the Eagle Nebula (M16) was taken using a TeleVue NP101is refractor and ZWO ASI2600MC Pro color camera.  I took similar images without using a filter and with using a ZWO Duo-Band filter.   

The comparison is pretty dramatic.  The Eagle Nebula is mostly a Ha emission object and a perfect candidate for the filter.  The reddish nebulosity is significantly more visible with the filter than without.  So when a clear night comes along, the Moon won't stop me anymore!

Ever wonder how astronomical objects got their name?  Dottie convinced our cat Mars to demonstrate how the Cat's Paw Nebula got its name.  Of course, now Mars wants me to rename the nebula the "Mars Paw Nebula"!

The Cat's Paw nebula (NGC 6334) is located in the lower part of Scorpio, near the "stinger", and is actually pretty big... larger than a full moon.  This area of gas and dust is an active star forming region.  The nebula is too dim to see with the eye but a long camera exposure easily reveals it.  


While Comet NEOWISE (C/2020 F3) continues to be a wonderful sight in the evening sky, I'm reminded of how weather dependent astronomy is.  Here in New Mexico we're in the monsoon season.  And true to its form, our night sky has been totally clouded out for the past several nights.  Finally, on Tuesday the forecast for that night had improved to "mostly cloudy".

It was five days ago that I took a picture of the comet so I planned to set up my photo rig in hopes of getting a new image tonight.  About sunset I started setting up the equipment:  finding a good spot in the yard to see low to the northwest horizon, setting up and leveling the iOptron ZEQ-25 telescope mount, attaching the camera and connecting it to the laptop computer.  By the time my neighbor Joe came over to watch the comet it was dark enough that I could polar align and synchronize the mount to the sky.

As it got darker, we waited... and waited.  Every now and then a portion of the comet would appear among the clouds.  Each time I'd start a sequence of  image exposures in hopes of getting  something useful.  A few times it cleared enough that we could see the comet and its dust tail with the naked eye.  Joe finally got to see why Neowise was special. 

Even though the sky wasn't cloud-free, this image of Neowise nicely shows the comet's yellowish dust tail and bluish ion tail.  And, in a way, the clouds add an interesting dimension to the picture.

Comet NEOWISE on 2020-07-21

Comet NEOWISE (C/2020 F3) has blossomed into a fine sight right now in the early evening sky. Dottie and I watched it last night and it was obvious low on the northwest horizon. Here in our dark skies I estimated that the tail was about six degrees long to the unaided eye.

Since the comet is very low in the sky I set up a photo rig on the driveway where I could see down to the horizon. I can't actually image that low from the observatory. This picture was taken at 9:18, about an hour after sunset, so it wasn't totally dark yet. Even though some clouds are in the way, a good amount of its dust tail is visible.

Thirty minutes later the sky was almost totally dark and the dim parts of the comet popped out. Now both the yellowish dust tail and the bluish ion tail really stand out and are very long. Jump over to the Solar System astrophoto page to see this image. Urban light pollution will mask the fainter parts of the comet too. So if possible, go to a darker location to view this wonderful comet. You'll see a whole lot more of it!

Astronomy and music go together... right? Well, I think so anyway. So I regularly have music playing in the observatory when I'm out there taking pictures. Dottie and my favorite pianist/composer is Robin Spielberg and I thought her song Spellbound would be a perfect match for an astronomy slideshow. So I put together a music video using some of my astronomy photos set to Spellbound.

Dottie and I met Robin about a year ago and shortly into a conversation I learned she loves astronomy pictures. Since then Robin has been enjoying my astronomy photos that I've shared with her. When I sent Robin my Spellbound Nights video she posted it on her YouTube Channel as the "Spellbound - Official Video". How cool is that!

Here's a link to the Spellbound music video. Take a look!

Back in May of 2005, 15 years ago, I got my first astronomy specific camera: the Starlight Xpress SXV-M8C one-shot color camera. Prior to that I was using my Canon 40D DSLR for astro photos. The 40D was a good camera in general, but too grainy for the long exposures needed for astrophography.

One-shot color cameras like the M8C include the Bayer color filter matrix over the sensor, just like regular photography cameras do. The good part of that is that a every exposure is a color image. The bad part is that the built-in color filters reduce the camera's sensitivity and require longer exposures than a monochrome camera does.

Galaxy M81 near the bowl of the Big Dipper

I took this 2-hour exposure time photo of Galaxy M81 with the M8C a couple of nights ago to honor it's 15 year anniversary. It can still produce a nice image!

Early predictions for Comet SWAN (C/2020 F8) suggested that it could brighten to naked eye visibility and be a showpiece object. However, early comet predictions are often overly optimistic.

Comet SWAN the morning of May 14, 2020

As feared, it hasn't brightened as hoped. But there's another problem that impacts me taking a picture of it. The comet is staying low on the eastern horizon as it travels northward. The way my observatory is positioned, its roof blocked visibility of SWAN until it was above 9 degrees of elevation. By then the sky had already started its dawn brightening. That means the sky is masking the dimmer parts of the comet's tail.

To get an image while SWAN is still in a darker part of the sky I'd have to move outside of the observatory, maybe on the driveway where there's a better view of the low NE sky, and use my small portable telescope mount.

Maybe... we'll see.

Update on Comet Swan

On May 18th I did take another picture of Comet SWAN. Unfortunately there were cloud layers on the eastern horizon that blocked the comet most of the time. Just as the sky started to brighten, SWAN went between two cloud layers and I got a picture of it just seven degrees above the horizon. Go to the Solar System astrophoto page to see it. The comet was still small though, so it just didn't blossom as hoped.

The roof controller Peter and I are designing for our observatories is continuing to evolve. Peter has it installed and working in his observatory!

A current sensor has been added to the hardware so that the system can monitor the roof's motor current draw and auto-stop on either an under or over current event. A real time clock (RTC) and a SD Card interface was also added to allow status logging.

Roof control and status monitoring is via a web page interface. This page will continue to evolve as new features are added. An example screenshot is shown below.

Controller Web Page Example after a Simulated Roof Closing Run